Technologien für klimaneutrale Unternehmen Ist CCU oder CCS eine passende Lösung für mich und welche Alternativen gibt es?

Sophie Pathe

Industrieland Nordrhein-Westfalen

120.000 Unternehmen

Jeder fünfte Euro des deutschen Industrieumsatzes wird in NRW erwirtschaftet

2 Millionen Beschäftigte

25 % der

Portfolio Bereich Industrie & Produktion

INformation

Webseite, Social Media, Broschüren, Fact Sheets, Veranstaltungen, Vorträge, Diskussionen, Interviews, Weiterverweise etc.

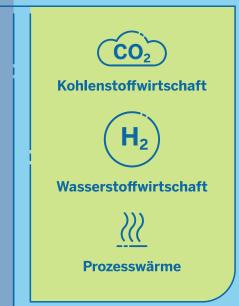
INitialberatung

Standardprojekte und Multiplikatoren unterstützen durch Erstgespräche, initiale Fördergespräche, Vernetzung, grobes Feedback etc.

INteraktion (IN4climate)

Gemeinsame (Gremien-)Arbeit mit Industrie, Wissenschaft und Politik; Gemeinsame Diskussionspapiere etc.

Ökonomie, Politik & Gesellschaft

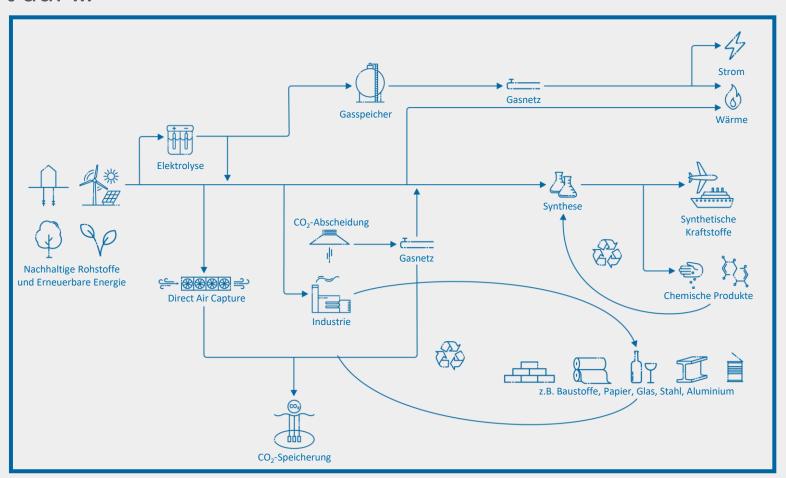

Schlüsseltechnologien & -rohstoffe

INkubation

Leuchtturmprojekte "von außen" unterstützen bei Fördermittelakquise (z.B. LOIs), Konsortialbildung, Planung etc.

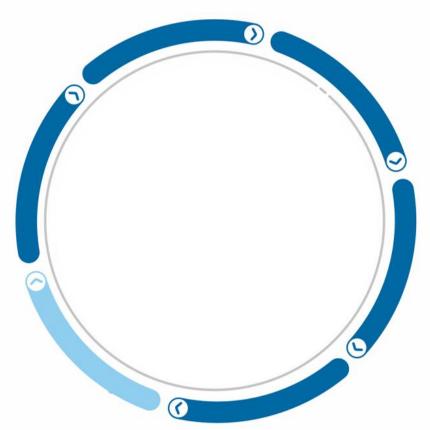
INtegration

Leuchtturmprojekte "von innen" unterstützen als assoziierter Partner oder als Mitglied des Lenkungs- / Begleitkreises


- Aus jedem unserer fünf eng miteinander vernetzten Themenfelder stellen wir Informationsangebote zur klimaneutralen Transformation der Industrie bereit, beraten initial und sind im Kontext von IN4climate.NRW aktiv.
- Die spezifische Unterstützung von Leuchtturmprojekten erfolgt schwerpunktmäßig aus den anwendungszentrierten Themenfeldern Wasserstoffwirtschaft, Kohlenstoffwirtschaft und Klimaneutrale Prozesswärme.
- Die Themenfelder Schlüsseltechnologien und -rohstoffe, sowie Ökonomie, Politik, Gesellschaft sind hier jeweils unterstützend involviert.

Transformationspfade für eine klimaneutrale Industrie

Klimaneutrale Industrie basiert auf ...


- Nachhaltigen Rohstoffen und erneuerbaren Energien (als Grundvoraussetzung)
- Grüner Wasserstoffwirtschaft (H₂ als Rohstoff und Energieträger)
- Klimaneutrale Prozesswärme
- Kohlenstoffwirtschaft
- Circular Economy
- Politischen, gesellschaftlichen und wirtschaftlichen Rahmenbedingungen

Strategiezyklus Wärmewende

Sechs Schritte auf dem Weg zur klimaneutralen Wärmeversorgung

Strategisches Commitment der

Geschäftsleitung zur Klimaneutralität

Strategische Vorstellung der Rolle des Unternehmens in einer klimaneutralen Wirtschaft

Ausreichende Datengrundlage zur

Energienutzung und -versorgung im Unternehmen (insb. Prozesswärme)

Schritt 6

Umsetzung

unter Orientierung am Vier-Stufen-Modell einer klimaneutralen Prozesswärmeversorgung

Schritt 4

Strategische Idee zur Wärmenutzung und

-versorgung und entsprechender Technologien in einer klimaneutralen Wirtschaft

Schritt 5

Roadmap für die unternehmensinterne Entwicklung zur klimaneutralen Wärmenutzung

Steigerung der Effizienz (Energie und Exergie)

z. B. Prozessoptimierungen, interne und externe Abwärmenutzung

+ 2 Erschließung erneuerbarer Wärmequellen

d. h. Solarthermie, Tiefengeothermie

⊥ 2 Elektrische Wärmeerzeugung (mit EE-Strom)

z. B. Elektrodenkessel, Induktion

+ 4. Alternative Energieträger (Grüner H₂, Biomasse, Biomethan, synthetisches Methan, u. a.)

z. B. neuartige Brennertechnologien, Brennstoffzellen

Steigerung der Effizienz (Energie und Exergie)

z. B. Prozessoptimierungen, interne und externe Abwärmenutzung

X %
CO₂-Vermeidung

(der direkten Emissionen)

Steigerung der Effizienz (Energie und Exergie)

z. B. Prozessoptimierungen, interne und externe Abwärmenutzung

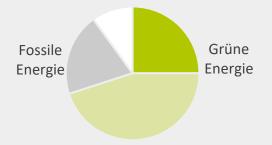
+ 2 Erschließung erneuerbarer Wärmequellen

d. h. Solarthermie, Tiefengeothermie

X %
CO₂-Vermeidung

(der direkten Emissionen)

Steigerung der Effizienz (Energie und Exergie)


z. B. Prozessoptimierungen, interne und externe Abwärmenutzung

→ 2 Erschließung erneuerbarer Wärmequellen

d. h. Solarthermie, Tiefengeothermie

→ 2 Elektrische Wärmeerzeugung (mit EE-Strom)

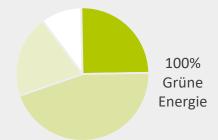
z. B. Elektrodenkessel, Induktion

X %
CO₂-Vermeidung
(der direkten Emissionen)

Steigerung der Effizienz (Energie und Exergie)

z. B. Prozessoptimierungen, interne und externe Abwärmenutzung

→ 2 Erschließung erneuerbarer Wärmequellen


d. h. Solarthermie, Tiefengeothermie

+ 3 Elektrische Wärmeerzeugung (mit EE-Strom)

z. B. Elektrodenkessel, Induktion

+ 4. Alternative Energieträger (Grüner H₂, Biomasse, Biomethan, synthetisches Methan, u. a.)

z. B. neuartige Brennertechnologien, Brennstoffzellen

100 % CO₂-Vermeidung

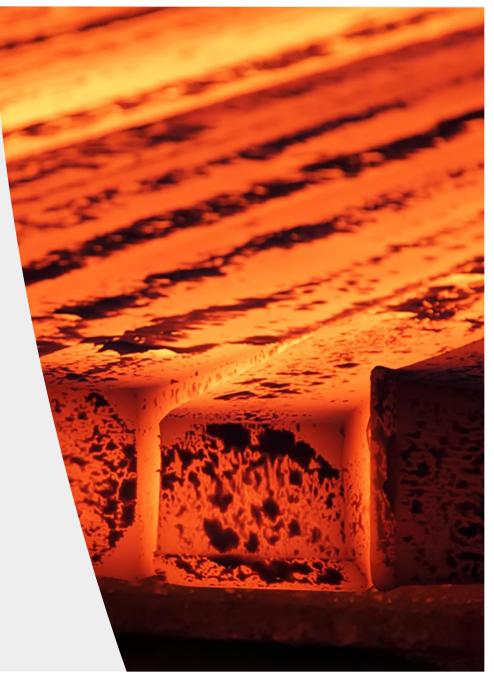
(der direkten Emissionen)

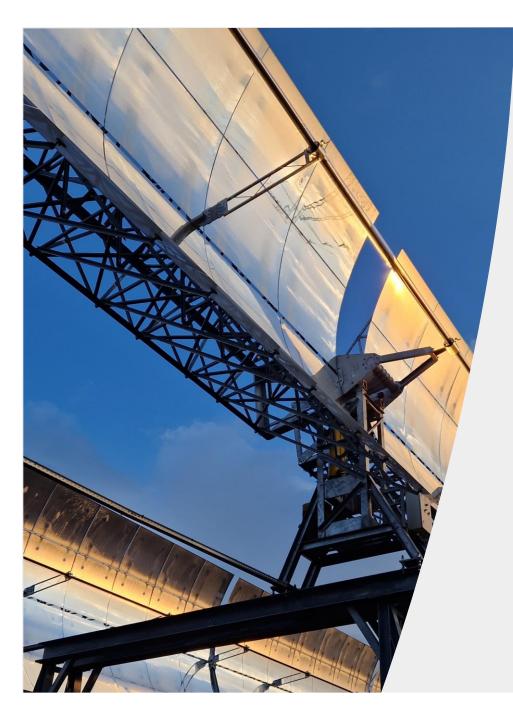
1. Steigerung der Effizienz

NRW.ENERGY 4CLIMATE

Verringerung des eigenen Wärmebedarfs durch:

- Prozessoptimierung bzw. -umstellung (z. B. Absenkung der Temperaturen)
- Vermeidung bzw. Verminderung von Wärmeverlusten (z. B. Wärmedämmung)
- Rückführung der Abwärme in den Prozess (ggf. mittels HT-WP)
- Betriebsinterne Verwendung der Abwärme im Gebäudebereich (z. B. Erwärmung der Hallenluft)




Oder anderweitige Nutzung von Abwärme:

- Umwandlung der Wärme in andere Energieformen (z. B. Verstromung)
- Einspeisen der Abwärme in ein Fernwärmenetz

Transformation von Hochtemperaturprozesswärme

- Viele Optionen bzgl. Technologien und Energieträgern
 - Elektrifizierung (z. B. Widerstandserwärmung, induktive, konduktive, dielektrische sowie Infrarot-, Plasma- oder Lichtbogen-Verfahren)
 - Grüner Wasserstoff
 - Biomasse und Biogas
- Regionale Gegebenheiten berücksichtigen
 - Verfügbarkeit von Energieträgern mit den benötigten Anschlussleistungen vor Ort (Infrastrukturverfügbarkeit)
- Hilfreich: Hybridisierung und Flexibilisierung um auf begrenzte Mengen oder Kapazitäten von Strom oder Wasserstoff, sowie auf Preissignale der Energieträger flexibel reagieren können

2. Erschließung erneuerbarer Wärmequellen Solarthermie in der Industrie

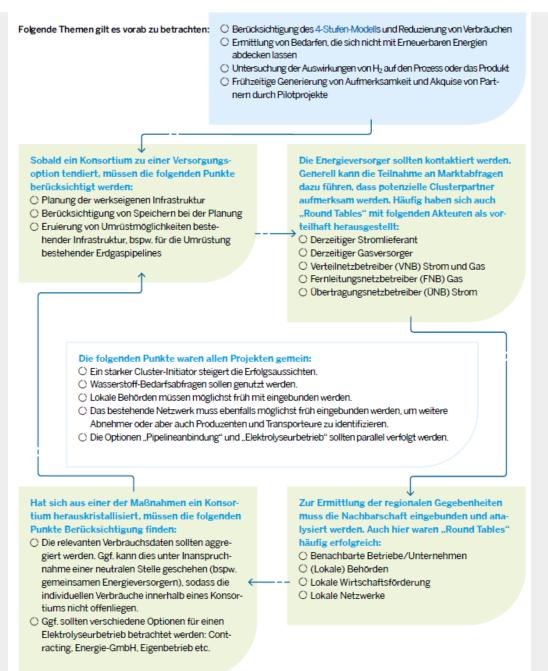
Im Betrieb unabhängig von Energiepreisen und -importen

- Kann (in Kombination mit einem Wärmespeicher) die Prozesswärmebereitstellung bis über 400°C unterstützen
- Baustein auch in unseren Breitengraden **bis ca. 250 °C** (100 % Deckungsgrad wegen Fluktuation nicht möglich)
- Besonders relevant: Flächenverfügbarkeit (Anlage, Speicher, Leitungsnetz)
 - evtl. Nutzung von Dachflächen oder Aufständerung mit Co-Nutzung

3. Elektrische Wärmeerzeugung Die Hochtemperatur-Wärmepumpe

Direktelektrische Wärmeerzeugung (PtH)

Wärme aus Wasserstoff (PtGtH)


Wärme aus synthetischem Methan (PtGtH)

- Technisch lässt sich die gesamte Wärmenachfrage bis 200 °C durch Wärmepumpen decken
- Generell ist die Wärmepumpe nicht als eine isolierte Technologie zu verstehen, sondern muss immer in Kombination mit anderen Technologien betrachtet werden.
 - erneuerbarer Wärmequellen z. B. Geothermie, (konzentrierende) Solarthermie, industrielle Abwärme
 - Kombination mit Wärmespeichertechnologien (Saisonal-/ Tagesspeicher)

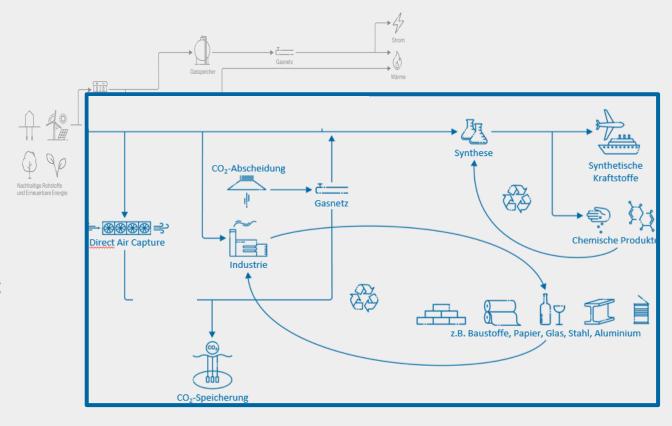
4. Alternative Energieträger Wasserstoffversorgung

- Individuelles Vorgehen für jedes Projekt notwendig
- Optionen
 - Pipelineanschluss
 - Elektrolyseur
 - Einzellösung
 - Clusterlösung

Transformationspfade für eine klimaneutrale Industrie

Kohlenstoffwirtschaft

NRW hat einen hohen industriellen Ressourcenbedarf. Eine Dekarbonisierung ist nicht überall möglich, da **Kohlenstoff** bei einigen Prozessen **als Rohstoff** benötigt wird, z. B. in der:


- Chemieindustrie
- Metallurgie

Dieser Kohlenstoffbedarf muss mit Alternativen zu fossilem Kohlenstoff nachhaltig gedeckt werden. **Zukunftsfähige C-Quellen** sind Sekundärmaterialien, Biomasse und CO₂. Hierfür wird eine **CO₂-Wirtschaft mit geeigneter Transportinfrastruktur** benötigt.

Industrien mit rohstoffbedingten CO₂-Mengen z. B.:

- Glasindustrie
- Kalk- und Zementindustrie

Für überschüssige CO₂-Mengen wird eine CO₂-Speicherung benötigt.

Nachhaltiger Einsatz von Biomasse

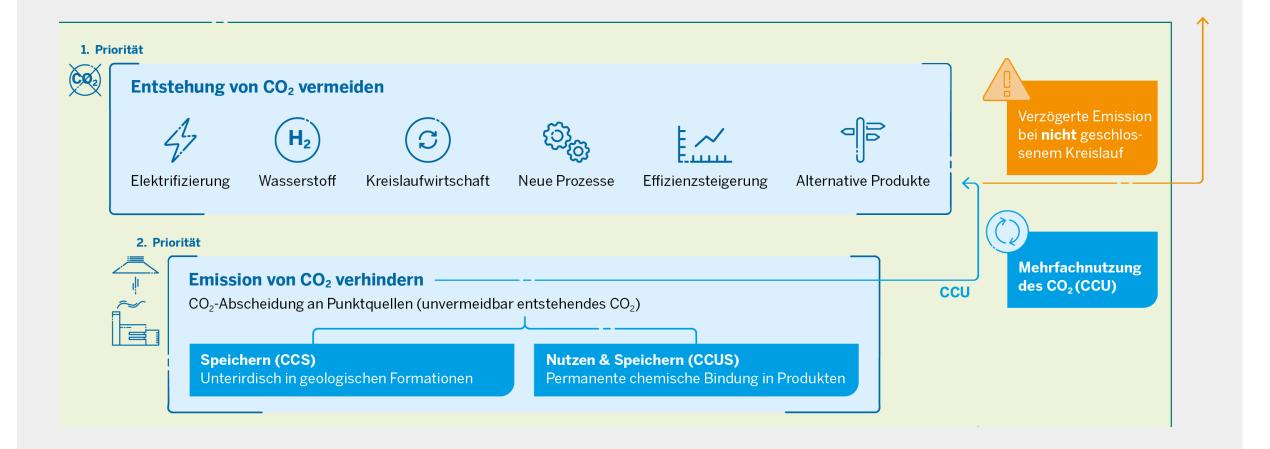
Biogener Kohlenstoff als Feedstock für die Industrie

Biomasse ist limitiert.

Die Bereitstellung von **biogenem Kohlenstoff** sollte nicht direkt durch Anbaupflanzen, sondern durch **Nebenprodukte und Rückstände** erfolgen.

Vorgehensweise:

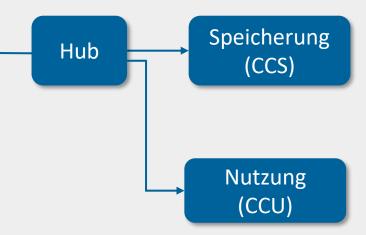
- ✓ Ist der Einsatz von Biomasse notwendig?
- ✓ Identifizieren geeigneter biogener Reststoffe /
 Prozessmaterialien inkl. 1. Preisabschätzung
- ✓ Technische Prüfung geeigneter Materialien
- ✓ Analyse der Verfügbarkeit und Kosten
- ✓ Skalierung: Teil- oder Voll-Substitution
- ✓ Langfristige Lieferverträge
- ✓ Produktzertifizierung
- ✓ Marketing und Mehrerlöse durch grünesProdukt


Biomasse-Nutzungshierarchie Strukturelle Anbaupflanzen Nutzung - Konstruktionsmaterialien & Möbelbau - Papier und Zellstoff - Textilfasern & Kleidung Stoffliche Nebenprodukte und Rückstände z. B. Stroh, Biogas Nutzung - Feedstock für chemische Industrie AUFRERFITLING - Kohlenstoffquelle zur Herstellung von z. B. Biokohle Werkstoffeigenschaften (z. B. in der Metallurgie) **Energetische** Biogenes CO2 als BECCU an nachhaltige C-Quelle Punktquellen Abfälle z. B. Altholz, Klärschlamn Nutzung - Hochtemperaturwärme (vor Niedertemperaturwärme) Negative BECCS an - Kraftstoffe für Flug- und Seeverkehr Emissionen - KWK (gleichzeitige Strom- und Punktauellen Wärmeerzeugung) klimaschädlicher Emissionen Emissionen (z. B. GWP in CO24g CO2 < H2 < CH4 < N2O)

Die Grafik stellt ein vereinfachtes Schema dar und hat keinen Anspruch auf Vollständiekeit

NRW.ENERGY 4CLIMATE

Eine industrielle Carbon Management Hierarchie


Eckpunkte Carbon Management-Strategie und Gesetzesänderung des Kohlendioxidspeicherungsgesetzes

Zwischen-

lagerung

- Offshore-Speicherung in der AWZ vorangetrieben (Bundesrecht)
- Onshore-Speicherung ermöglicht (Landesrecht)
- keine Speicherpotenziale in NRW

• Erlaubt: Alle Quellen außer Kohlekraftwerke

Abscheidung &

Konditionierung

 Gefördert: schwer vermeidbare CO₂-Quellen (zunächst v. a. Kalk, Zement, therm. Abfallvert.) • Multimodaler Transport

Privatwirtschaftlich betriebene Pipelines

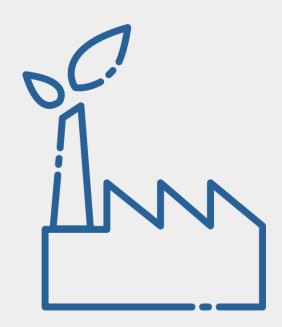
Transport über Straße,

Schiene oder Wasserstraße

Einspeisung in ein CO₂-Netz

 grenzüberschreitender Transport und Speicherung in ausländischen Speicherstätten soll zügig ermöglicht werden

 Vision für CO₂-Nutzung in Deutschland noch offen



Was können Sie als Unternehmen jetzt tun?

Transformationskonzepte und Projektentwicklung

- Ganzheitliche Transformationskonzepte für einzelne Produktionsprozesse voranbringen
 - Potenzial eigene Energiebereitstellung analysieren
 - Prozesswärme- und andere Energiebedarfe analysieren
 - Kohlenstoffbedarfe und nicht-fossile Kohlenstoffquellen identifizieren
 - Schwer vermeidbare (fossile) und biogene Emissionen identifizieren
- Projekte entwickeln, die politisch unterstützt werden und absehbar ein Geschäftsmodell haben
 - Erneuerbare Wärmequellen und Elektrifizierung first
 - Fossiles CO₂ → Speicherung (geologisch oder permanent in Produkten)
 - Biogenes CO₂ → Speicherung oder Nutzung
- Technologiescreening & -weiterentwicklung

Projektumsetzung vorbereiten

- Starke Partner entlang der Lieferkette finden
 - Anlagenbau, Infrastrukturbetreiber (Stromtrassen, Pipeline, Schiff, Bahn),
 CO₂-Speicherbetreiber (anfangs international) oder CO₂-Nutzer

- Regionale Akteure einbinden
 - Landes-, Regional- und Kommunalpolitik an Bord holen
 - Genehmigungsbehörden vorbereiten
 - Regionalen Diskurs mit verschiedenen Stakeholdern führen
 - Transparenz zu Transformationspfaden, Technologien sowie zukünftigen Energie- und Infrastrukturbedarfen schaffen

Mehr Informationen

Publikationen: https://www.energy4climate.nrw/publikationen

Praxisbeispiele: https://www.energy4climate.nrw/industrie-produktion/praxisbeispiele-industrietransformation

Kontakt: industrie@energy4climate.nrw

Vielen Dank für Ihre Aufmerksamkeit!

Sophie Pathe sophie.pathe@energy4climate.nrw

NRW.Energy4Climate GmbH Kaistraße 5, 40221 Düsseldorf

Picture credits: © NRW.Energy4Climate © iStock.com-Strekalova, © iStock.com-betoon, © iStock.com-kodda